If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-10x-135=0
a = 5; b = -10; c = -135;
Δ = b2-4ac
Δ = -102-4·5·(-135)
Δ = 2800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2800}=\sqrt{400*7}=\sqrt{400}*\sqrt{7}=20\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-20\sqrt{7}}{2*5}=\frac{10-20\sqrt{7}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+20\sqrt{7}}{2*5}=\frac{10+20\sqrt{7}}{10} $
| 80p=10,600 | | 2x/58=15 | | 90p=10,600 | | 4(4x+7)=64 | | 10,600p=80 | | -5(w+3)=35 | | 75-19x=11(x+15 | | 3=3(x-5)-5x | | .25y-3(-2)=9 | | x/6+13.1=-6.1 | | 2=2(v+5)-6v | | -8.5-6x-8.3-4x=9x+3.9 | | -03.y=7.53 | | 28/42=x/54. | | 25=93.2h | | -15=7(y-5)-5y | | 3z(3z+11)=60 | | (3x-14)+x=180 | | -3.1+w/8=-15.9 | | 179-v=241 | | x/4+3/8=-7/12 | | 18x=3,6 | | 2=6=n | | X+2x+2x=x+12 | | 156=205-u | | 284=-y+119 | | -50=x16-44 | | 6x+3(7-x)=36 | | 13=t/2 | | X+y=380 | | 3y^2-12y=-3 | | 4(x+8)-9x=77 |